Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 64(8): 1531-1542, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35652263

RESUMO

Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE3 (MAPK3 or MPK3) and MPK6 play important signaling roles in plant immunity and growth/development. MAPK KINASE4 (MKK4) and MKK5 function redundantly upstream of MPK3 and MPK6 in these processes. YODA (YDA), also known as MAPK KINASE KINASE4 (MAPKKK4), is upstream of MKK4/MKK5 and forms a complete MAPK cascade (YDA-MKK4/MKK5-MPK3/MPK6) in regulating plant growth and development. In plant immunity, MAPKKK3 and MAPKKK5 function redundantly upstream of the same MKK4/MKK5-MPK3/MPK6 module. However, the residual activation of MPK3/MPK6 in the mapkkk3 mapkkk5 double mutant in response to flg22 pathogen-associated molecular pattern (PAMP) treatment suggests the presence of additional MAPKKK(s) in this MAPK cascade in signaling plant immunity. To investigate whether YDA is also involved in plant immunity, we attempted to generate mapkkk3 mapkkk5 yda triple mutants. However, it was not possible to recover one of the double mutant combinations (mapkkk5 yda) or the triple mutant (mapkkk3 mapkkk5 yda) due to a failure of embryogenesis. Using the clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 (Cas9) approach, we generated weak, N-terminal deletion alleles of YDA, yda-del, in a mapkkk3 mapkkk5 background. PAMP-triggered MPK3/MPK6 activation was further reduced in the mapkkk3 mapkkk5 yda-del mutant, and the triple mutant was more susceptible to pathogen infection, suggesting YDA also plays an important role in plant immune signaling. In addition, MAPKKK5 and, to a lesser extent, MAPKKK3 were found to contribute to gamete function and embryogenesis, together with YDA. While the double homozygous mapkkk3 yda mutant showed the same growth and development defects as the yda single mutant, mapkkk5 yda double mutant and mapkkk3 mapkkk5 yda triple mutants were embryo lethal, similar to the mpk3 mpk6 double mutants. These results demonstrate that YDA, MAPKKK3, and MAPKKK5 have overlapping functions upstream of the MKK4/MKK5-MPK3/MPK6 module in both plant immunity and growth/development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Desenvolvimento Vegetal , Imunidade Vegetal/genética
2.
Nat Plants ; 8(2): 171-180, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35194203

RESUMO

Phloem transport of photoassimilates from leaves to non-photosynthetic organs, such as the root and shoot apices and reproductive organs, is crucial to plant growth and yield. For nearly 90 years, evidence has been generally consistent with the theory of a pressure-flow mechanism of phloem transport. Central to this hypothesis is the loading of osmolytes, principally sugars, into the phloem to generate the osmotic pressure that propels bulk flow. Here we used genetic and light manipulations to test whether sugar import into the phloem is required as the driving force for phloem sap flow. Using carbon-11 radiotracer, we show that a maize sucrose transporter1 (sut1) loss-of-function mutant has severely reduced export of carbon from photosynthetic leaves (only ~4% of the wild type level). Yet, the mutant remarkably maintains phloem pressure at ~100% and sap flow speeds at ~50-75% of those of wild type. Potassium (K+) abundance in the phloem was elevated in sut1 mutant leaves. Fluid dynamic modelling supports the conclusion that increased K+ loading compensated for decreased sucrose loading to maintain phloem pressure, and thereby maintained phloem transport via the pressure-flow mechanism. Furthermore, these results suggest that sap flow and transport of other phloem-mobile nutrients and signalling molecules could be regulated independently of sugar loading into the phloem, potentially influencing carbon-nutrient homoeostasis and the distribution of signalling molecules in plants encountering different environmental conditions.


Assuntos
Floema , Zea mays , Folhas de Planta/genética , Plantas , Açúcares , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...